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The transformation groupoid0 = O M × G, whereO M is the total space of the gener-
alized frameG-bundle over spacetime with a singular boundary, is not a Lie groupoid
but a differential groupoid, i.e., a smooth groupoid in the category of structured spaces.
We define this concept and use it to investigate spacetimes with various kinds of sin-
gularities. Any differential transformation groupoid can be represented by an algebra
of operators on a bundle of Hilbert spaces defined on the groupoid fibers. This algebra
reflects the structure of a given fiber even if it is a fiber over a singularity. It is also shown
that any spacetime with singularities can be regarded as a noncommutative space. Its
geometry is done in terms of a noncommutative algebra defined on the corresponding
differential transformation groupoid. We focus on the structure of “malicious singulari-
ties” such as the ones appearing in the beginning and in the end of the closed Friedman
universe.

KEY WORDS: differential groupoid; classical singularities; structured spaces;
singular boundaries; spacetime.

1. INTRODUCTION

In the present paper, we continue our research on spacetime singularities
by using methods of generalized geometries. In the standard approach, classical
spacetime singularities are regarded as ideal points of spacetime or as elements of
its “singular boundary,” and one attempts to collect information on the existence
of singularities and possibly on their nature by approaching them, in a kind of a
limiting process, from within the spacetime manifold (Clarke, 1993; Hawking and
Ellis, 1973). In our program, we are looking for broader mathematical categories
than that of sufficiently smooth manifolds which would allow us to regard even
the strongest singularities as “internal elements” of a generalized space. In Heller
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and Sasin (1995a,b,c) we have applied to this end the theory of structured spaces,
developed previously by us in Heller and Sasin (1994). It has turned out that
singularities of milder kinds (the so-called regular and quasi-regular singularities,
in the classification of Ellis and Schmidt, 1977) nicely surrender to the methods
of structured spaces, but the strongest singularities (such as the ones appearing in
the closed Friedman world model and in the Schwarzschild solution), called by us
malicious singularities, still create serious problems. For instance, the initial and
final singularities of the closed Friedman universe form a single point of Schmidt’s
b-boundary which is not Hausdorff separated from the rest of spacetime (Bosshard,
1976; Johnson, 1977). The structured space methods transparently disclose the
mechanism of this behavior, but can hardly supply a remedy.

Schmidt’s method of defining theb-boundary of spacetime consists in con-
structing the Cauchy completionO M of the frame bundleO M over spacetime
M (with the help of a Riemannian metric onO M) and “projecting it down” (by
using the action of the structural groupG on O M) to obtain M̄ = ∂bM ∪ M,
where∂bM is theb-boundary of spacetimeM . In Heller and Sasin (1996, 1999)
we pushed forward the “desingularization” process by constructing a groupoid
0 = O M × G and defining on it a noncommutative algebraA. It has turned out
that the fibers of0, even the ones over malicious singularities, are isomorphic to
the entire groupG. By using methods of noncommutative geometry we were able
to prove several theorems formulating the conditions under which various types
of singularities appear (Heller and Sasin, 1999).

The method of constructing a noncommutative space with the help of a smooth
groupoid is well known (Connes, 1994, pp. 99–103); however, to apply it to spaces
with singularities we had to go beyond the category of smooth manifolds. In our
previous works we did that in a more or less implicit way. One of the goals of the
present paper is to do this explicitly and in a rigorous manner. This is achieved in
Section 3 where we define the concept of the groupoidin the category of structured
spaces(we call it differential groupoid), and explore some of its properties. To
make the paper self-contained we give, in Section 2, a short review of necessary
tools from the theory of structured spaces.

Our second goal is to further develop our methods in the study of classi-
cal singularities appearing in relativistic cosmology and relativistic astrophysics.
Main tools serving this end are differential transformation groupoids and suitable
(noncommutative) algebras on them. We prepare these tools in Section 4, and test
them on simple toy models in Section 5. In Section 6, these tools are applied to
the study of malicious singularities and, finally, in Section 7, we summarize our
main results. Some information on a given singularity (even if it is a malicious
one) is contained in its differential dimension (a concept defined in the theory of
structured spaces) and in the isotropy group of the “singular fiber.” This group
can be thought of as measuring the “strength” of the singularity: for fibers over
malicious singularities it is isomorphic to the entire groupG; for fibers over milder
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singularities it is isomorphic to a certain subgroup ofG; and for fibers over non-
singular points it is isomorphic to the trivial subgroup ofG (consisting of its neutral
element). These properties are reflected in the structure of the representation of
the corresponding differential groupoid in a Hilbert space, and to a certain extent
in a noncommutative algebra defined on this groupoid.

2. STRUCTURED SPACES

Let (M, τ ) be a topological space, andC a sheaf of real continuous functions
on (M, τ ). The symbolC(U ), U ∈ τ , denotes the cross section ofC onU .

Definition 2.1. The sheafC is said to be adifferential structureon M if for any
open setU ∈ τ and any functionsf1, . . . , fn ∈ C(U ) andω ∈ C∞(Rn), the super-
positionω ◦ ( f1, . . . , fn) belongs toC(U ). The pair (M, C) is called thestructured
space; if topology is important we also write (M, τ, C).

Example 2.2. Let M be a differential manifold, andC the sheaf of smooth func-
tions onM . C is a differential structure onM , and the pair (M, C) is a structured
space.

Let us consider a presheafD on a topological space (M, τ ). For any open set
U ∈ τ , a function f : U → R is said to be alocal D-functionon M , if for any
point p ∈ U there exists a neighborhoodV of p and a cross sectiong ∈ D(V) such
that f | U ∩ V = g | U ∩ V . The presheaf of localD-functions onM is denoted
byD+. In fact,D+ is a sheaf on (M, τ ), and this sheaf is isomorphic with the sheaf
associated with the presheafD.

Let now (M, C) be a structured space, andA a nonempty subset ofM . Let us
consider the presheafC | A of restrictions of cross sections ofC to open subsets
of A. The differential structureCA := (C | A)+ is called a differential structure
inducedfrom M to A, and the pair (A, CA) astructured subspaceof (M, C).

Let (M, C) be a structured space andp ∈ M any of its points. ByCp we shall
denote the space of all germs of the sheafC at the pointp, i.e., the set of equivalence
classes of the equivalence relation≡p given by

f ≡p g⇔ f |W = g |W
for f ∈ C(U ), g ∈ C(V), p ∈ W ⊂ U ∩ V , U , V , W ∈ τ. Cp is a linear algebra
overR.

Definition 2.3. A linear mappingv : Cp→ R, such that

v(f · g) = f(p) · v(g)+ g(p) · v(f )
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for f, g ∈ Cp, is said to be thetangent vectorto the structured space (M, C) at p.
Let us denote byTpM the linear space of all tangent vectors to (M, C) at p.

Definition 2.4. By the (local) dimensionof a structured space (M, C) at p ∈ M
we understand dimTpM .

Example 2.5. Let (M, τ, C) be a structured space, andρ an equivalence relation
on M . We form the quotient topological space (M/ρ , τ/ρ). The quotient sheaf
C/ρ, given by

(C/ρ)(U ) = { f : U → R: f ◦ πρ | π−1
ρ (U ) ∈ C(π−1

ρ (U )
)}

for U ∈ τ/ρ, with πρ : M → M/ρ being the canonical projection, is a differ-
ential structure on (M/ρ , τ/ρ), and (M/ρ , τ/ρ , C/ρ) is the quotient structured
space.

In principle, there is no limitation on the topologyτ appearing in the defini-
tion of structured spaces. However, ifτ = τC(M) is the weakest topology in which
functions belonging toC(M) are continuous, then the sheafC is determined by the
algebra of global sectionsC(M), and many geometric problems considerably sim-
plify. The spaces (M, τC , C), which now can simply be denoted by (M, C), where
C = C(M), are calledSikorski differential spacesor S-spacesfor short (Sikorski,
1967, 1971, 1972). Any S-space (M, C) can be interpreted as a structured space
(M, C̃), whereC̃ is a sheaf of the form̃C(U ) = C | U, for U ∈ τC. (M, C(M)) is
evidently an S-space. The topologyτC(M) is, in general, weaker thanτ . It can be
shown thatτ = τC(M) if and only if, for anyU ∈ τ and any pointp ∈ U , there exists
a functionφ ∈ C(M), calledbump function, such thatφ(p) = 1 and suppφ ⊂ U
(Helleret al., 1992).

Let (M, C) be an S-space. We say that its differential structureC is generated
by a subsetC0 of C, written C = GenC0, if any function f ∈ C can locally be
presented in the form

f | U = ω ◦ (g1, . . . , gn) | U,

whereU ∈ τC, ω ∈ C∞(Rn), g1, . . . , gn ∈ C0, n ∈ N.

Lemma 2.6. Bounded functions on an S-space generate its differential structure.

Proof: Let (M, C) be an S-space, andCb the subalgebra ofC of bounded func-
tions onM . Let us consider the familyB of functions of the formB = {α ◦ f ; f ∈
C}, whereα : R→ R is given byα(x) = tan−1 x. Of course,B ⊂ Cb.

We shall show thatC = GenB. Indeed, letf be any function ofC, and p
any point ofM . Let us suppose that the pointα( f (p)) has a neighborhoodV . We
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define the functionβ(x) = tanx · φ(x) if x ∈ V , andβ(x) = 0 otherwise, where
φ is a bump function centered atf (p). It can be seen that

f | U = β ◦ (α ◦ f ) | U,

whereU = (α ◦ f )−1(V0) with V0 a neighborhood off (p) contained inV on
which the bump functionφ ≡ 1. This means that the differential structureC is
generated byB and consequently also byCb. ¤

Definition 2.7. Let (M, C) and (N,D) be structured spaces. A continuous map-
ping f : M → N is calledsmoothif, for any cross sectiong ∈ D(U ), the super-
positiong ◦ ( f | f −1(U )) is an element ofC( f −1(U )). In such a case, we write
f : (M, C)→ (N,D).

The set of all structured spaces as objects with smooth mappings as morphisms
constitutes a category—thecategory of structured spaces. Geometry of structured
spaces was systematically developed in Heller and Sasin (1995a).

Structured spaces are a suitable tool for investigating various spaces with
singularities (Heller, 1992; Heller and Sasin, 1995a,b,c, 1996, 1999). In all these
studies Schmidt’s construction of theb-boundary of spacetime (Schmidt, 1971)
proved to be useful. Now, we prepare a more general setting (in the category of
structured spaces) for this construction.

Let (M̄ , C) be a structured space such thatM̄ = M ∪ ∂M with M a smooth
manifold which is open and dense in̄M . The∂M is called thesingular boundary
of M (in particular, it can be Schmidt’sb-boundary of spacetime). Further let
π : T M̄ → M̄ be the tangent bundle over̄M (for details see Heller and Sasin,
1995b), and let us consider the Whitney sum

πn = (π × · · · × π ) | Tk M̄ : T M̄ ⊕ · · · ⊕ T M̄ → M̄ .

We defineO M := O M ∪ (πn)−1(∂M), whereO M is the total space of the frame
bundle overM . In the “singular fibers” we choose all possible sets ofn tangent
vectors. In this way, we obtain thegeneralized frame bundleover M̄

π̄ : M O→ M̄ ,

whereπ̄ = πn | O M.
Let G be the structural group of the bundle (O M, π̄ , M̄). G acts onO M to

the rightO M × G→ O M. Let us notice that

O M/G = O M/G ∪ (πn)−1(∂M)/G = M ∪ ∂M.

Example 2.8. Let M̄ = M ∪ {x0} such that the only open neighborhood ofx0 in
M̄ is the entireM̄ (x0 is a malicious singularity, see below Section 6). In this case,

(πn)−1({x0}) = {(0, . . . , 0)}
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since dimTx0 M̄ = 0. Indeed, the global cross sections of the structured sheafC
are constant functions. This means that the space of its germs is isomorphic with
R, and consequently each tangent vector atx0 is the zero vector (Heller and Sasin,
1994).

3. DIFFERENTIAL GROUPOIDS

We begin this section with a brief description of the groupoid structure (see,
for instance, Paterson, 1999, Chapter 1) mainly to fix the notation. By agroupoid
we mean a set0 with a distinguished subset02 ⊂ 0 × 0 and two mappings,
one· : 02→ 0 defined by (x, y) 7→ x · y, called multiplication, and another
−1 : 0→ 0 defined byx 7→ x−1 such that (x−1)−1 = x, calledinversion(we treat
multiplication in the same way as the composition of functions, i.e., we begin
multiplying from the right).02 is called theset of composable elements. Both
mappings are supposed to satisfy the following conditions:

(i) if ( x, y), (y, z) ∈ 02 then (xy, z), (x, yz) ∈ 02 and (xy)z= x(yz),
(ii) ( y, y−1) ∈ 02 for all y ∈ 0, and if (x, y) ∈ 02 then x−1(xy) = y and

(xy)y−1 = x.

We also define theset of units00 = {xx−1: x ∈ 0} ⊂ 0, and introduce the
following mappings: thesource mapping d: 0→ 00 by d(x) = x−1x, and the
target mapping r: 0→ 00 by r (x) = xx−1. Let us notice that two elementsx,
y ∈ 0 can be composed (multiplied) with each other, i.e., (x, y) ∈ 02, if and only
if d(x) = r (y).

For eachu ∈ 00 let us define the sets

0u = {x ∈ 0 : d(x) = u} = d−1(u)

and

0u = {x ∈ 0 : r (x) = u} = r−1(u).

Both these sets give different fibrations of0. The set0u
u := 0u ∩ 0u is closed

under multiplication and inversion. It is called theisotropy groupatu.
If H ⊂ 0 is closed under multiplication and inversion, it defines thesub-

groupoidof 0 with the set of unitsH0 = d(H ) = r (H ) (Landsman, 1998, p. 271).
Groupoids can be regarded as generalizing and unifying the properties of

groups and equivalence relations. If we think of a group as describing symmetries
on the whole set, the groupoid, being a “group with many units,” should be thought
of as describing partial symmetries. The groupoid structure on a set tells us, just as
any equivalence relation, not only which elements of this set are equivalent, “but
it also parametrizes the different ways in which two elements can be equivalent”
(Weinstein, 1996). In fact, every equivalence relation is trivially a groupoid.
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The above is purely algebraic construction, but we can add to it the smoothness
structure. This is done in the following way (Paterson, 1999).

Definition 3.1. A groupoid0 is asmoothor Lie groupoidif

(i) 0 is a smooth manifold,
(ii) 00 is a Hausdorff submanifold of0,

(iii) every 0u and0u is Hausdorff in the relative topology,
(iv) the multiplication and inversion maps are smooth,
(v) the range and source maps are submersions.

In the following definition we generalize the above concept to the category
of structured spaces.

Definition 3.2. A groupoid0 is adifferential groupoidif

(i) 0 is a structured space,
(ii) 00, 0u, 0u, for everyu ∈ 00, are Hausdorff structured spaces,

(iii) multiplication and inversion maps are smooth
(iv) the range and source mappings are submersions (called also coregular

mappings).

In this definition, smoothness should be understood in the sense of Defini-
tion 2.7, and submersion in the category of structured spaces is defined in the
following way.

Definition 3.3. A smooth mapping

f : (M, C)→ (N,D)

is said to be asubmersionor acoregular mappingif for everyx ∈ M there exist an
open neighborhoodU of x, an open neighborhoodV of f (x), a structured space
(N0,D0), and a diffeomorphism

φ : (U, CU )→ (V,DV )× (N0,D0)

such thatpr1 ◦ φ = f | U, wherepr1 : V × N0→ V is the obvious projection.

This definition is a straightforward generalization of the definition given by
Waliszewski (1972, 1975) for S-spaces. Roughly speaking, it says that a mapping
is a submersion if it is locally the projection of a Cartesian product.

Lemma 3.4. A subgroupoid H of a differential groupoid0 is a differential
groupoid.

Proof: H is closed with respect to multiplication and inversion by the sub-
groupoid definition.H is also a structured subspace of0 with the differential
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structure induced from that of0, and multiplication and inversion inH are smooth
as restrictions of smooth mappings.¤

In many applications it is important to have a Haar system on groupoids. It
is evident that if we restrict a differential groupoid to its regular fibers, i.e., to the
fibers over a smooth manifold, we obtain the Lie subgroupoid, and the problem of
the existence of Haar systems on it reduces to the problem of the existence of Haar
systems on Lie groupoids (see, for instance, Paterson, 1999, pp. 61–64). In the
cases considered in the following sections, a Haar measure on the corresponding
differential groupoids always exists (see below).

4. DIFFERENTIAL TRANSFORMATION GROUPOID
AND ITS C∗-ALGEBRA

Transformation groupoids (also called action groupoids) form an important
class of Lie groupoids (see, for instance, Landsman, 1998). In this section, we
present their generalization to the category of structured spaces.

Let E be a structured space, and let a groupG act on it to the right,E × G→
E. This action leads to the bundle (E, πM , M = E/G). The Cartesian product
0 = E × G has the structure of a groupoid (we call it adifferential transformation
groupoid). The elements of0 are pairsγ = (p, g), wherep ∈ E andg ∈ G. Two
such pairsγ1 = (p, g) andγ2 = (pg, h) are composed in the following way:

γ2γ1 = (pg, h)(p, g) = (p, gh),

and the inverse of (p, g) is (pg, g−1). If we representγ = (p, g) as an arrow
beginning atp and ending atpg, then two arrowsγ1 andγ2 can be composed if
the beginning ofγ2 coincides with the end ofγ1. The set of units is

00 = {γ−1γ : γ ∈ 0} = {(p, e) : p ∈ E}.
To see that this groupoid is indeed a differential groupoid ( in the category

of structured spaces), it is enough to show that mappingsd and r are smooth
surjections (in the category of differential spaces). But it is clear from the fact that
the mappingsφ : 0→ 00× G andψ : 0→ 00× G, given by

φ(p, h) = ((p, e), h), for (p, h) ∈ 0,

and

ψ(p, h) = ((ph, e), h), for (p, h) ∈ 0,

are diffeomorphisms satisfyingpr1 ◦ φ = d and pr1 ◦ ψ = r.
Let us also notice that0 = E × G is a Hausdorff groupoid. Indeed, the

Cartesian productE × G (G can even be a discrete group) of two Hausdorff
spaces is a Hausdorff space.
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We have

0(p,e) = {(p, g) : g ∈ G}
and

0(p,e) = {(ph−1, h) : h ∈ G}.
In what follows, we shall abbreviate the symbols0(p,e) and0(p,e) to 0p and0 p,
respectively. If an elementγ = (p, g) ∈ 0 is visualized as an arrow fromp to pg,
the set0p can be thought of as the set of arrows which begin in (p, e), and the set
0 p as the set of arrows which end at (p, e).

Now, we prove the useful lemma.

Lemma 4.1.
⋃

g∈G 0pg =
⋃

g∈G 0
pg = pr−1(x), where pr= πM ◦ πE and x=

πM (p).

The lemma says that the counterimage ofx ∈ M under the projectionpr is a
sum ofg-equivalent groupoid fibers of arrows that begin atp ∈ E, resp. end atp,
wherep is such thatπM (p) = x. Two fibers0p and0q (0 p and0q) are defined
to be equivalent if there existsg ∈ G such thatq = pg.

Proof: We prove the second part of the lemma; the first one goes analogously.
Let γ ∈⋃g∈G 0

(pg,g−1). This implies thatγ = (pgh−1, h), and

pr (γ ) = πM (πE(pgh−1, h)) = πM (pgh−1) = πM (p) = x,

i.e.,
⋃

g∈G 0
(pg,g−1) ⊂ pr−1(x).

Now, letγ ∈ pr−1(x). This implies that ifγ = (q, h), say, then

prM (prE(q, h)) = πM (q) = x⇒ ∃g ∈ G, q = pg.

Therefore,γ is of the form (pg, h). Hence,r (γ ) = (pgh, e), and this means that
γ ∈⋃g∈G 0

(pg,e). ¤

In all cases considered below (unless the contrary statement is evident from
the context), we shall assume that on the groupG there exists a left Haar measure.
Since all fibers of the groupoid0 are isomorphic withG, the Haar system can
be defined on0, and0 can be treated as a locally compact Hausdorff groupoid
(see Paterson, 1999, p. 32).

We shall use the following representation of the groupoid0. Every element
γ of the groupoid0 is represented as an operator from the Hilbert spaceHd(γ ) to
the Hilbert spaceHr (γ ) whereHu = L2(0u). We thus define the representation

L : 0→ End
(
Hd(γ ),Hr (γ )

)
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by

L(γ )(ξ )(η) = ξ (γ−1η), (1)

whereξ ∈ L2(0d(γ )), η ∈ 0r (γ ) (for details see Paterson, 1999, p. 93).
On every groupoid0 we can define an involutive algebraAc = C∞c (0, C)

of compactly supported, complex valued functions. Leta, b ∈ Ac and γ ∈ 0.
Multiplication inAc is defined in the following way:

(a ∗ b)(γ ) =
∫
0d(γ )

a(γ2)b(γ1) =
∫
0d(γ )

a
(
γ γ−1

1

)
b(γ1) dγ1, (2)

whereγ = γ2 ◦ γ1 and the integration is with respect to a Haar measure. The
involution is defined by

a∗(γ ) = a(γ−1).

If the groupG is noncompact, the algebraAc is not unital. In this case, to
avoid difficulties connected with this fact, we perform the following construction.

We define the algebraAproj := pr∗M (C∞(M)). This is of course the com-
mutative algebra with the standard pointwise multiplication of functions (notice
that the functions ofAproj are constant on the equivalence classes of the groupoid
fibers, see Lemma 4.1). The idea is to consider the algebraA = Ac ×Aproj which
would allow us to recover “in the limit” the geometry of spacetimeM = E/G in
the case whenG is the Lorentz group. In fact, on the strength of Lemma 2.6, to
this end it is enough to consider, instead ofAproj, its subalgebraAb

proj of bounded
functions.

We now define the bilateral action of the algebraAb
proj on the algebraAc in

the natural way

(a, f )→ a · f, ( f, a)→ f · a
for a ∈ A, f ∈ Ab

proj. We evidently havea · f = f · a. Now, we define the algebra
A = Ac ×Ab

proj with the following operations:

(a1, f1)+ (a2, f2) = (a1+ a2, f1+ f2),

(a1, f1) ∗ (a2, f2) = (a1 ∗ a2+ f1a2+ f2a1, f1 f2),

(a, f )∗ = (a∗, f̄ ).

We shall also use the additive notation by writinga+ f instead of (a, f ). In this
way, we obtain the involutive algebraA = Ac ×Ab

proj with unit 1= 0+ 1, where
1 is a constant function having everywhere the value 1. This is the unitization
of the algebraAc which is essentially equivalent to the compactification of the
corresponding noncommutative space (Gracia-Bond´ıaet al., 2001, pp. 13–14).
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Let us now define the representationπq : A→ EndHq of the algebraA =
Ac ×Ab

proj in the Hilbert spaceHq = L2(0d(γ )) = L2(0q) by

πq(a+ f )(ξ ) = 1
πq(a)(ξ )+ 2

πq( f )(ξ ), (3)

where

1
πq(a)(ξ ) =

∫
0q

a
(
γ γ−1

1

)
ξ (γ1) dγ1

and

2
πq( f )(ξ ) = f (q, e)(ξ ).

We also define the “integrated” representation ofA, π =⊕q∈00 πq, which is, in
fact, a one-parameter family of representations.

Now, we define the norm in the algebraAc in the following way:

‖a‖ = sup
q∈00

∥∥ 1
πq(a)

∥∥,

and in the algebraAb
proj

‖ f ‖ = sup
q∈00

∥∥ 2
πq( f )

∥∥;

and finally for the algebraA = Ac ×Ab
proj

‖(a, f )‖ = max{‖a‖, ‖ f ‖}.
The algebraA completed with respect to this norm is aC∗-algebra. We could use
the algebraA (or its “operator version”πp(A)) to construct a noncommutative
space. The geometry of this space would be “fully desingularized” (Heller and
Sasin, 1999, Section 7).

5. TOY MODELS

In this section we compute two simple models to illustrate the above con-
struction. Although they are extremely naive, they nicely show subtleties of the
“desingularization” process.

5.1. Model R× Z2

In this example,E = R andG = Z2, and the action ofZ2 on E is given by

(p, 1) 7→ p and (p,−1) 7→ −p.
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The base space (“spacetime”)M = E/Z2 is clearly a half-line with a singularity
at x = 0. It is a regular singularity since it can be removed by embeddingM in a
larger space (in this case, inR). We can think ofp ∈ E as of a frame (a vector) at
x ∈ M , which is either unmoved or reflected byZ2. ThenE is the total space of
theZ2-frame bundle overM , and the differential groupoid0 = E × Z2 is formed
by two disconnected lines. The fibers of the groupoid are

0p = {(p, 1), (p,−1)}, 0 p = {(p, 1), (−p,−1)}.
We define the algebraA on the groupoidA = C∞(E × Z2, C). In this simple

model, the usual function multiplication would be all right; however, since we want
to illustrate a more general situation, we define the following noncommutative
multiplication:

(a ∗ b)(γ ) =
∑

γ=γ2◦γ1

a(γ2)b(γ1).

Because of theZ2 grading we can write

A =
{(

a1

a2

)
: a ∈ C∞(R, C)

}
.

The subalgebraAproj is

Aproj =
{(

a
a

)
: a ∈ C∞(R, C), a is an even function

}
.

It is surely the differential structure on the half-line.
The representationL(γ ) : E × Z2→ End(l 2(0d(γ ), 0r (γ ))) of the groupoid

E × Z2 can be readily computed. We obviously have

L(p, 1)= idl 2(0 p);

and since forγ = (p,−1) the groupoid fibers are

0d(γ ) = {(p, 1), (−p,−1)}, 0r (γ ) = {(p,−1), (−p, 1)},
we easily compute thatL transforms the basis vectors inl 2(0d(γ )) into the basis
vectors inl 2(0r (γ )) in the following way: (10 ) 7→ ( 0

1 ), ( 0
1 ) 7→ ( 1

0 ). Therefore,

L(p,−1)=
(

1 0
0 1

)
.

(For instance,L(p,−1)(1
0 )(p,−1)= ( 1

0 )((p,−1)−1(p,−1))= ( 1
0 )(p, 1)= 1.)

Now, we shall find the representation of the algebraA in the Hilbert space
l 2(0p). It can be easily seen that

l 2(0p) =
{(

ξ1

ξ2

)
: ξ1, ξ2 ∈ C

}
' C2,
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and the representation is given by

πp(a)(ξ )(γ ) =
∑

γ=γ2◦γ1

a(γ2)ξ (γ1).

If we choose the basis ((1
0 ), ( 0

1 )) in C2, we easily compute

(πp(a))p∈E =
(

a(p,+1) a(−p,−1)

a(p,−1) a(−p,+1)

)
p∈E

.

(For instance, πp(a)( 1
0 )(p, 1)= a(p, 1)(1

0 )(p, 1)+ a(−p,−1)(1
0 )(p,−1)=

a(p, 1) · 1+ a(−p,−1) · 0= a(p, 1).)
Let us now analyze the situation at the singularityx = 0. The “singular fibers”

are

0p0 = 0 p0 = {(0, 1), (0,−1)}, πM (p0) = 0,

and0 p0
p0 = 0p0 ∩ 0 p0 ' Z2 (for nonsingular fibers we evidently have0 p

p ' {e}).
Since the fibers0d(γ ) and0r (γ ) over the singularity coincide, the groupoid

representationL reads

L(0, 1)= L(0,−1)= idl 2(00).

The representation of the algebraAat the “singular fiber” is clearly of the form

πp0(a) =
(

a1 a2

a2 a1

)
,

whereas at all other fibers

πp(a) =
(

a1 a3

a2 a4

)
.

As we can see, in this case, both the representation of the groupoid and the repre-
sentation of the algebra distinguish the “singular fiber” from other fibers.

5.2. Model R× R

In this model, we assumeE = R andG = (R,+) = {Ta : a ∈ R, Ta(x) =
x + a}.We evidently have the actionE × G→ E given by (x, a) 7→ x + a, which
allows us to define the groupoid0 = R× G. Its fibers are

0p = {(p, τ ) : τ ∈ R} = {p} × R,

which are, of course, “vertical lines,” and

0 p = {(pt−1, t) : t ∈ R},
which are lines inclined by an angle of 45◦ with respect to the previous ones (to see
this, introduce the coordinatesx = pt−1 = p− t, y = t). Therefore, all fibers are
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equivalent, and consequentlyM = E/G = {point}. The situation is seemingly not
unlike in the closed Friedman universe with theb-boundary where topologically
everything reduces to a single point. However, we can easily see that the isotropy
group0 p

p ' {e}, for every p ∈ E, which is the typical situation for nonsingular
points (for malicious singularities the isotropy group is isomorphic to the entire
groupG). Therefore, in this example,M is a one-point space and not a malicious
singularity.

The representation (1) of the groupoid0 is

L(p, t)(ξ )(pt, τ ) = ξ (p+ t, τ − t).

Also this representation does not show any singularity.
We define the algebraA = C∞c (0, C) with the multiplication

(a ∗ b)(γ ) =
∫
0p=R

a(pτ, t − τ )b(p, τ )

where we have assumedγ = (p, t), γ1 = (p, τ ). This leads to the algebra repre-
sentation

πp(a)(ξ )(γ ) =
∫

R
a(pτ, t − τ )ξ (p, τ )

for all p ∈ E. Thus although “macroscopically” the considered space consists of
a single point, from the “quantum point of view” (as represented by operators on
a Hilbert space) it is a rich space.

6. MALICIOUS SINGULARITY

6.1. General Case

We now apply the above machinery to investigate the structure of malicious
singularities. A singularity ismaliciousif it is a one-element orbit of the action
of the groupG on the structured spaceE and if the subalgebraC∞G (E) ⊂ A of
G-invariant functions onE (i.e., functions that are constant on the orbits ofG) is
isomorphic toC. Let thenx0 ∈ ∂M be a malicious singularity. For simplicity we
assume that∂M = {x0}. Therefore, we haveM = E/G = {x0} ∪ E0/G, where
E0 = E\(πM )−1(x0). We also haveπM (p0) = x0, p0 ∈ E. The fiber over the ma-
licious singularity is a fixed point of the action of the groupG on E, p0G = p0.
Besides this fiber the action ofG is free, i.e.,G acts freely onE0, i.e.,πM : E0→
E0/M is aG-bundle.

Now, we construct the differential groupoid0 = E × G. Since in the mali-
cious singularityx0 ∈ ∂bM, p0h = p0 for everyh ∈ G, we have

0p0 = 0 p0 = {(p0, h) : h ∈ G} = p0× G ' G.
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From this formula it is evident that the fiber over the malicious singularity can be
given the structure of the group manifoldG (if G is a Lie group). In this way, also
malicious singularities can be represented by well-behaved structures. Therefore,
we can truly speak about the “desingularization” procedure. The “largeness” of the
isotropy group at the singular fiber can be regarded as a measure of the “strength”
of the singularity. Indeed, in the extreme cases, if (p0, h) lies in the fiber over the
malicious singularity then0 p0

p0 = 0p0 ∩ 0 p0 ' G, and ifu = (p, h) lies in the fiber
over a nonsingular point ofM then0 p

p ' {e}. Let us also notice that for the fiber
over the malicious singularity{x0} we have (see Lemma 4.1)⋃

g∈G

0pg =
⋃
g∈G

0 pg = pr−1(x0).

The differential dimension of̄M at the singularityx0 is zero.
The representation of the groupoid in the bundle of Hilbert spaces is given

by formula (1). For the fiber over the malicious singularity we haved(γ ) = r (γ ),
which impliesγ−1η = η, and consequentlyL(γ ) = idL2(0d(γ )). We thus have

Proposition 6.1. The representationL(γ ) of the transformation groupoid0, for
γ being an element of the groupoid fiber over the malicious singularity, is reduced
to a single identity operator on the Hilbert space L2(0d(γ )) = L2(0r (γ )). h

In physically significant cases (for instance, in the Schmidt’sb-boundary
construction)G is assumed to be the connected component of the Lorentz group.
This group is not compact, and consequently the algebraA is not unital. Therefore,
we must perform the unitization of this algebra (see Section 4). Since in the case
with the malicious singularityAproj = C, the algebra on the groupoid0 = E × G
isA = Ac × C, and its representation (3) assumes the form

πp(a+ c)(ξ ) = 1
π p(a)(ξ )+ 2

π p(c)(ξ )

=
∫
0p

a
(
γ γ−1

1

)
ξ (γ1) d(γ1)+ Hc(ξ ),

whereHc(ξ ) = c · ξ for all p ∈ E.

6.2. Two-Dimensional Friedman Universe

The closed Friedman world model is a classical example of a solution to the
Einstein field equations with two malicious singularities. In the present section,
we analyze its two-dimensional analogue (Bosshard, 1976; Dodson, 1978) with
the help of our machinery. We consider the spacetime

N = {(η, χ ) : η ∈ (0, T), χ ∈ S1},
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where (0,T) ⊂ R. On N there is the metric

ds2 = R2(η)(−dη2+ dχ2)

such thatR2(η)→ 0 asη→ 0. This corresponds to the initial singularity. We can
also assume that there exists the final singularity, i.e., thatR2(η)→ 0 asη→ T .
However, in the present analysis we shall focus only on the initial singularity.

Let 1
R(η) [

∂η
∂χ

] be a frame inN (the factor 1
R(η) is needed to guarantee the

orthogonality of the frame in the above metric). All frames at a given point (η, χ ) ∈
N can be obtained by rotating

1

R(η)

[
coshλ sinhλ
sinhλ coshλ

] [
∂η
∂χ

]
.

It can be demonstrated that the mapping

λ 7→
[

coshλ sinhλ
sinhλ coshλ

]
(4)

gives the isomorphism of the group (R,+) with the matrix group

G =
{[

cosht sinht
cosht sinht

]
: t ∈ R

}
.

The homomorphism (4) is obvious. To show the homomorphism in the reverse
direction let us notice that the matrices ofG have the form [a b

b a ] with a > 1
anda2− b2 = 1. There exists exactly oneλ such that sinhλ = b. Therefore,a =√

1+ b2 = √1+ sinhλ2 = coshλ (the minus sign is excluded sincea > 1). In
the following we shall assume that the above matrices are multiplied by the factor
(R(η))−1. We thus can write the total space of the positively oriented component
of the orthonormal frame bundleO N over N in the form

O N = {(η, χ , λ) : η ∈ (O, T), χ ∈ S1, λ ∈ R}.
This frame bundle is globally trivial. One can easily check thatN = O N/R.

Since we have the actionO N× R→ O N defined by ((η, χ , λ), t)→ (η, χ ,
λ+ t), we can construct the transformation groupoid0 = O N× R = {(η, χ ,
λ, t) : η ∈ (O, T), χ ∈ S1, λ, t ∈ R}. If γ ∈ 0 we shall writeγ = (p, t), and
d(γ ) = p = (η, χ , λ), r (γ ) = pt = (η, χ , λ+ t). The groupoid fibers are as usual

0p = {(p, t) : t ∈ R}, 0 p = {(pt−1, t) : t ∈ R}.
Two fibers0p and0q are equivalent ifp = (η, χ , λ1) andq = (η, χ , λ2). Let us
notice that the structure of the equivalence classes of this relation is very similar
to that of the modelR× R discussed in Section 5.2.

0 is obviously a Lie groupoid. It is known (Bosshard, 1976; Dodson, 1978)
that the fiber (in Schmidt’s fiber bundle) over the malicious singularity “atη = 0”
consists of a one point; let us denote it byp0. The total space of the generalized



P1: GDW

International Journal of Theoretical Physics [ijtp] pp464-ijtp-372236 May 30, 2002 10:32 Style file version May 30th, 2002

Differential Groupoids and Spacetime Singularities 935

fiber bundle (see Section 2) is̄E = E ∪ {p0}, and the groupoid̄0 = Ē × G is a
differential groupoid.

The groupoid representation (1) in this model assumes the form

L(p, t)ξ (pt, τ ) = ξ (p+ t, τ − t).

Over the malicious singularity the fibers0d(γ ) and0r (γ ) coincide, and the “singular
fiber” is represented by the identity operator (see Proposition 6.1).

Since the groupG = R is noncompact we must perform the unitization of the
algebraAc = C∞c (0̄, R). Therefore, as the algebra on the groupoid0̄ we assume
A = Ac ×Aproj, with the operations as defined in Section 3. Let us notice that if
ā ∈ Ac then

ā =
{

a(η, χ , λ, t) if (η, χ , λ, t) ∈ 0,

α(t) if (η, χ , λ, t) ∈ 0̄\0,

and

α(t) = lim
η→0

a(η, χ , λ, t).

Representation (2) of this algebra is

πp(a+ f )(ξ )(γ ) =
∫
0p

a
(
γ γ−1

1

)
ξ (γ1)+ f (p)ξ,

a ∈ Ac, f ∈ Aproj, which is a nontrivial operator algebra also in the case when
p = p0 lies in the fiber over the malicious singularity.

7. RESULTS

In this paper, we have introduced the groupoid concept in the category of struc-
tured spaces. In the same way that structured spaces are substantial generalizations
of smooth manifolds, differential groupoids are generalizations of smooth or Lie
groupoids. This opens a new field of groupoid applications, both in pure mathe-
matics and in theoretical physics, in domains in which one encounters nonsmooth
situations. We have applied this new tool to the study of spacetime singularities as
they appear in relativistic physics and obtained the following results:

1. To further develop the procedure of “spacetime desingularization” we
have constructed the generalizedG-frame bundle over spacetime with a
singular boundary (in the category of structured spaces), ¯π : O M→ M ∪
∂M (Schmidt’s frame bundle over a spacetime with itsb-boundary being
a special case), and then the transformation groupoid0 = O M × G. 0 is
not a Lie groupoid but a Hausdorff differential groupoid (in the category
of structured spaces).
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2. The groupoid fibers0u and0u, for all u ∈ 00, are isomorphic to the
groupG (also over malicious singularities). For all groupoid fibers over
nonsingular points the isotropy group0u ∩ 0u = 0u

u is trivial (i.e., iso-
morphic with{e}). For singular fibers the isotropy group is nontrivial: for
fibers over malicious singularities0u

u is isomorphic to the entire groupG,
and for weaker singularities0u

u is isomorphic to a subgroup ofG. In this
way, the isotropy group of a given groupoid fiber can be thought of as
measuring the “strength” of the corresponding singularity.

3. The transformation groupoid0 can be represented in a “bundle of Hilbert
spaces” suitably defined on the groupoid fibers in such a way that to a given
elementγ of 0 (an “arrow”) there corresponds an operator transforming
the Hilbert space defined on the fiber determined by the beginning ofγ to
the Hilbert space defined on the fiber determined by the end ofγ . In this
way, the structure of the groupoid fibers (also of the ones over singularities)
is reflected in the structure of operators on the bundle of Hilbert spaces.

4. Spacetime with singularities (even the strongest ones) can be regarded as
a noncommutative space. Its geometry can be done in terms of a noncom-
mutative algebraA defined on the differential transformation groupoid
0 = O M × G. This algebra can be completed to theC∗-algebra and rep-
resented in a Hilbert space defined on the groupoid fibers. The correspond-
ing operator algebra on these Hilbert spaces depends on the geometric
structure of a given spacetime with singularities.
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